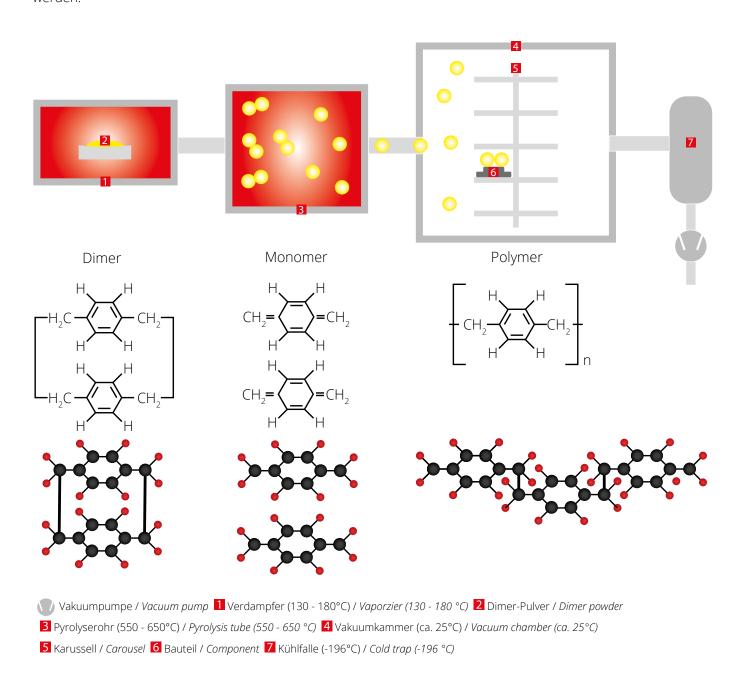


PARYLENE-ANLAGEN



WAS IST PARYLENE?

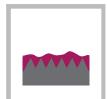
Eine Parylenebeschichtung ist die ideale Lösung zum Schutz hochwertiger Bauteile, Baugruppen oder Geräte. Parylene sind eine Gruppe von Polymeren, die chemisch exakt als Poly-para-xylylene bezeichnet werden.

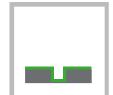
In einer nur für diese Materialklasse anzuwendenden Prozesstechnik können nahezu transparente Schutzschichten erzeugt werden.

Von den verschiedenen dünnen organischen Schichten, die im Vakuum bereits mit Plasmapolymerisierung erzeugt und aufgebracht werden, hat sich die sogenannte "Parylene"-Beschichtung als Korrosionsschutzschicht wegen der besonderen chemischen Widerstandsfähigkeit gegenüber fast allen Säuren und Laugen und organischen Lösemitteln sowie wegen der guten

Beständigkeit gegen Wasserdampfdiffusion eine besondere Bedeutung verschafft. Die Bezeichnung Parylene ist eine üblich gewordene Abkürzung für die vollständige chemisch richtigere Bezeichnung Poly-Para-Xylylen, das sich durch eine Reihe von ganz herausragenden Eigenschaften von anderen Kunststoff- und Lackschichten abhebt.

Ihre Vorteile mit Parylene:


- sind vollkommen konform: d.h. sie passen sich auch komplexen Substrat-Konturen an wie z. B. scharfen Kanten, Bohrungen oder Sacklöchern
- sind porenfrei ("pinhole-free") bereits ab Schichtdicken von ca. 0,5 µm
- sind chemisch unlöslich und beständig gegen eine Vielzahl von Chemikalien
- weisen sehr gute Barriereeigenschaften gegenüber Feuchtigkeit und Chemikalien auf und besitzen eine hohe elektrische Durchschlagsfestigkeit


- besitzen Trockenschmiereigenschaften (niedriger Reibungskoeffizient)
- sind hydrophob: Kontaktwinkel von H₂O zwischen 92° und 98°
- sind transparent zwischen 90 % und 96 % im sichtbaren Wellenlängenbereich
- Parylene der Typen C und N, sind biokompatibel und können nach USP Class VI, ISO 10993 und FDA zertifiziert werden

■ Parylene ■ Andere Beschichtungen (z.B. Urethan, Acryl etc.)

Das Anwendungsgebiet für Parylene ist nahezu unbegrenzt. Es reicht von einfachen Dichtungen, Rohren und Gefäßen in der Industrie über alle möglichen sensiblen elektrischen Bauteile wie Leiterplatten, Sensoren, Flugsteuersysteme und viele weitere. Da Parylene auch biokompatibel ist, wird sie sehr gerne in der Medizintechnik verwendet für Hörgeräte, Kanülen, Implantate, Sonden und Endoskope.

Parylene lässt sich in geeigneten Vakuumbeschichtungsanlagen in einer Schichtdicke von 1 µm bis ca. 50 µm auf praktisch allen Materialien wie Kunststoffe, Metalle, Glas, Keramik, Stoff, Papier aufbringen. Es hat eine besondere Verbreitung in der Korrosionsbeschichtung von bestückten Leiterplatten (PCB), Magneten und Elektromotoren, Sensoren für Druck und Temperaturmessungen und Sensoren für Füllstandsmessungen bei Lebensmitteln und Chemikalien, sowie bei medizinischen Geräten (biokompatibel), in der Uhrenindustrie und in der Sicherheitstechnik gefunden. Die Schichteigenschaften werden dadurch gekennzeichnet, dass bereits ab einer Dicke von mehr als 0,5 µm praktisch keine Fehlstellen in Form von kleinen "Pinholes" mehr vorhanden sind und so eine hermetisch dichte Schicht entsteht, die nur über die Diffusion durchdrungen werden kann.

Als weitere Eigenschaft dieser Schichten ist neben der hohen Durchschlagsfestigkeit (ca. 5 000 Volt bei 20 µm Schichtdicke) die hohe Temperaturbeständigkeit (F-Typen) von –150 °C bis +300 °C hervorzuheben. Sehr wichtig ist hierbei auch, dass die thermische Belastung des Substrates bei der Beschichtung ausgesprochen gering ist, da die Beschichtung in der Nähe der Raumtemperatur zwischen 20 °C und maximal 60 °C erfolgt, so dass auch thermisch empfindliche Substratmaterialien für die Beschichtung geeignet sind.

Wegen seiner chemischen Beständigkeit wird die Parylenebeschichtung auch bevorzugt bei medizinischen Geräten angewandt, die mit Körperflüssigkeiten in Kontakt kommen, wie Injektionsnadeln, Kathetern oder Implantaten, sowie Herzschrittmachern und ähnlichem. Aufgrund dieser physiologischen Unbedenklichkeit eignet sich diese Parylenebeschichtung auch zum Beschichten von eventuell allergieauslösenden Brillenteilen, Uhren oder anderen Schmuckgegenständen, die eine Hautirritation auslösen könnten.

WIR FREUEN UNS AUF SIE

www.plasma.com

Version	Standgerät			
Breite	700 mm			
Höhe	700 mm			
Tiefe	500 mm			
Parylene-Kammer	Ø 200 mm Höhe 200 mm Volumen 6 Liter Andere Kammergrößen auf Anfrage erhältlich			
Teileaufnahme	Karussell Ø 170 mm Höhe 170 mm			
Beschichtungswerkstoff	Parylene N, C, D, F-VT 4			
Mögliche Schichtdicke	0,05 bis zu 30 Mikrometer			
Pyrolyse	1,6 kW / max. 790 °C			
Kühlfalle	Flüssigstickstoff alternativ: elektromechanischer Kühler			
Pumpensystem	Zweistufige Drehschieberpumpe Saugleistung 16 m³ / h Enddruck 1 x 10 ⁻³ mbar			
Steuerung	PC-Steuerung (Windows 10 IoT / 11 IoT)			
Spannungsversorgung	400 V, 32 A, 50 / 60 Hz			

Version	Standgerät				
Breite	1210 mm				
Höhe	1440 mm				
Tiefe	785 mm				
Parylene-Kammer	Ø 300 mm Höhe 295 mm Volumen 21 Liter				
Teileaufnahme	Karussell Ø 248 mm Höhe 260 mm				
Beschichtungswerkstoff	Parylene N, C, D, F-VT 4				
Mögliche Schichtdicke	0,05 bis zu 50 Mikrometer				
Pyrolyse	2 kW / max. 850 °C				
Kühlfalle	Flüssigstickstoff alternativ: elektromechanischer Kühler				
Pumpensystem	Zweistufige Drehschieberpumpe alternativ: Trockenläufer Saugleistung 25 m³ / h Enddruck 1 x 10 ⁻³ mbar				
Steuerung	PC-Steuerung (Windows 10 IoT / 11 IoT)				
Spannungsversorgung	400 V, 32 A, 50 / 60 Hz				

Version	Standgerät				
Breite	2200 mm				
Höhe	1600 mm				
Tiefe	2700 mm				
Parylene-Kammer	Ø 500 mm Länge 610 mm Volumen 120 Liter				
Teileaufnahme	Drehtrommel Ø 445 mm Länge 580 mm				
Beschichtungswerkstoff	Parylene N, C, D, F-VT 4				
Mögliche Schichtdicke	0,05 bis zu 50 Mikrometer				
Pyrolyse	4 kW / max. 850 °C				
Kühlfalle	Flüssigstickstoff alternativ: elektromechanischer Kühler				
Pumpensystem	Zweistufige Drehschieberpumpe Saugleistung 65 m³ / h Enddruck 1 x 10 ⁻³ mbar				
Steuerung	PC-Steuerung (Windows 10 IoT / 11 IoT)				
Spannungsversorgung	400 V, 32 A, 50 / 60 Hz				

Version	Standgerät				
Breite	1000 mm				
Höhe	2000 mm				
Tiefe	2600 mm				
Parylene-Kammer	Ø 640 mm Höhe 800 mm Volumen 260 Liter				
Teileaufnahme	Drehtrommel Ø 560 mm Länge 650 mm				
Beschichtungswerkstoff	Parylene N, C, D, F-VT 4				
Mögliche Schichtdicke	0,05 bis zu 50 Mikrometer				
Pyrolyse	4 kW / max. 850 °C				
Kühlfalle	Flüssigstickstoff alternativ: elektromechanischer Kühler				
Pumpensystem	Zweistufige Drehschieberpumpe Saugleistung 65 m³ / h Enddruck 1 x 10 ⁻³ mbar				
Steuerung	PC-Steuerung (Windows 10 IoT / 11 IoT)				
Spannungsversorgung	400 V, 32 A, 50 / 60 Hz				

Version	Standgerät				
Breite	2700 mm				
Höhe	1600 mm				
Tiefe	2200 mm				
Parylene-Kammer	Ø 700 mm Höhe 720 mm Volumen 300 Liter Andere Kammergrößen auf Anfrage erhältlich				
Teileaufnahme	Karussell Ø 600 mm Höhe 660 mm				
Beschichtungswerkstoff	Parylene N, C, D, F-VT 4				
Mögliche Schichtdicke	0,05 bis zu 50 Mikrometer				
Pyrolyse	4 kW / max. 850 °C				
Kühlfalle	Flüssigstickstoff alternativ: Elektromechanischer Kühler				
Pumpensystem	Zweistufige Drehschieberpumpe Saugleistung 65 m³ / h Enddruck 1 x 10 ⁻³ mbar				
Steuerung	PC-Steuerung (Windows 10 IoT / 11 IoT)				
Spannungsversorgung	400 V, 32 A, 50 / 60 Hz				

		$\begin{array}{c c} H & H \\ \hline H_1C & H \\ \hline H & H \\ \end{array}$	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{bmatrix} C & H & CH_s \\ H & C & \end{bmatrix}_n$	CH ₂ F CH ₃
--	--	--	--	---	-----------------------------------

		Parylene N	Parylene C	Parylene D	Parylene F-VT4
Eigenschaft	Einheit	Poly(paraxylylen) [1, 2, 4]	Poly(monochlor para-xylylen) [1, 2, 4]	Poly(dichlor- para-xylylen) [1,2,4]	Poly(tetrafluor- para-xylylen) ^[3]
Dichte	g/cm³	1,11	1,29	1,42	~1,6
Brechungsindex	[]	1,66	1,64	1,67	1,57
E-Modul	GPa	2,4	3,2	2,8	3,0
Streckgrenze	MPa	42	55	60	52
Zugfestigkeit	MPa	45	70	75	55
Härte, Rockwell R	HR	85	80	80	-
Fließbereich	[%]	2,5	2,9	3,0	2,5
Bruchdehnung	[%]	30	200	10	10-50
Reibungskoeffizient, statisch	[]	0,25	0,29	0,35	0,39
Reibungskoeffizient, dynamisch	[]	0,25	0,29	0,31	0,35
Langzeit- hitzebeständigkeit	[°C]	60	80	100	200
1000h Dauerbelastung	[°C]	95	115	135	250
Schmelzpunkt	[°C]	420	290	380	-
Dielektrizitätskonstante (1 MHz)	[]	2,66	2,95	2,80	2,35
Dissipationsfaktor (1 MHz)	[]	0,001	0,013	0,002	0,008
Durchschlagsfestigkeit	[MV/cm]	300	185-220	215	-
Volumenwiderstand	[23°C, 50% RH, Ω cm]	1,4E+17	8,8E+16	2,0E+16	1,1E+17
Oberflächenwiderstand	[23°C, 50% RH, Ω]	1,0E+13	1,0E+14	5,0E+16	4,7E+17
Linearer Ausdehnungskoeffizient	[µm/m°C]	69	35	38	-
Wärmekapazität	[25°C, J/(g·K)]	1,3	1,0	0,8	-
Wärmeleitfähigkeit	[W/m-K]	0,13	0,08	-	-

^[1] J.B. Fortin, T.-M. Lu, Chemical Vapor Deposition Polymerisation, Kluwer Academic Publishers (2004) ISBN 1-4020-7688-6, p. 58. [2] J.J. Licari, Coating Materials for Electronic Applications, Noyes Publications (2003) ISBN 0-8155-1492-1, pp. 154-168. [3] A. Kahouli et al., Materials Chemistry and Physics 143 (2014) 908-914, Structural and dielectric properties of parylene-FT4 thin films. [4] www.matweb.com

WE CREATE SOLUTIONS.

Diener electronic GmbH & Co. KG | Nagolder Straße 61 | D-72224 Ebhausen Phone: +49 7458 / 999 31 - 0 | Fax: +49 7458 / 999 31 - 50 | E-Mail: info@plasma.com